纳米化造影剂在肿瘤诊断中的研究进展

刘红星, 赵锋, 马银玲, 张淑珍, 唐泽奥, 曹德英

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (18) : 1466-1475.

PDF(2185 KB)
PDF(2185 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (18) : 1466-1475. DOI: 10.11669/cpj.2021.18.005
综述

纳米化造影剂在肿瘤诊断中的研究进展

  • 刘红星1, 赵锋1*, 马银玲1,2, 张淑珍3, 唐泽奥1, 曹德英1*
作者信息 +

Research Progress of Nanometer Contrast Agent in Tumor Diagnosis

  • LIU Hong-xing1, ZHAO Feng1*, MA Yin-ling1,2, ZHANG Shu-zhen3, TANG Ze-ao1, CAO De-ying1*
Author information +
文章历史 +

摘要

近年来,随着计算机断层扫描(CT)成像技术及其他影像技术的发展,对造影剂的要求也越来越高。开发提高成像能力和检测准确性,融合多种成像技术的新型造影剂已成为当前的研究热点之一。本文综述了近年靶向和多模态CT造影剂在肿瘤诊断中的研究进展。

Abstract

With the development of CT imaging technology and other imaging technologies in recent years, the requirements for clinical auxiliary reagent contrast agent are increasingly high. The development of new contrast agents which can improve imaging capability and detection accuracy and fuse various imaging technologies has become one of the current research hotspots. This paper reviews the research progress of targeted and multimodal CT contrast agents in tumor diagnosis.

关键词

多模态成像 / 造影剂 / 肿瘤 / 纳米技术 / 体层摄影术

Key words

multimodal imaging / contrast media / neoplasm / nanotechnology / tomography

引用本文

导出引用
刘红星, 赵锋, 马银玲, 张淑珍, 唐泽奥, 曹德英. 纳米化造影剂在肿瘤诊断中的研究进展[J]. 中国药学杂志, 2021, 56(18): 1466-1475 https://doi.org/10.11669/cpj.2021.18.005
LIU Hong-xing, ZHAO Feng, MA Yin-ling, ZHANG Shu-zhen, TANG Ze-ao, CAO De-ying. Research Progress of Nanometer Contrast Agent in Tumor Diagnosis[J]. Chinese Pharmaceutical Journal, 2021, 56(18): 1466-1475 https://doi.org/10.11669/cpj.2021.18.005
中图分类号: R944    R969   

参考文献

[1] MASTORAKI S, STRATI A, TZANIKOU E, et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment[J]. Clin Cancer Res, 2018, 24(6):1500-1510.
[2] JOSEPH C S, PATEL R, NEEL V A, et al. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions Optical and Terahertz skin cancers imaging[J]. J Biophot, 2014, 7(5):295-303.
[3] GAUDIUSO R, EWUSI-ANNAN E, MELIKECHI N, et al. Using LIBS to diagnose melanoma in biomedical fluids deposited on solid substrates: Limits of direct spectral analysis and capability of machine learning[J]. Spectrochim Acta Part B Atomic Spectros, 2018, 146:106-114.
[4] MELIKECHI N, MARKUSHIN Y, CONNOLLY D C, et al. Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy[J]. Spectrochim Acta B, 2016, 123:33-41.
[5] SMITH K, GETZIN M, WANG G, et al. Manos nanophosphor-based contrast agents for spectral X-ray imaging[J]. Nanomaterials (Basel), 2019, 9(8):1092.
[6] GIANNAKIS D, TSILI A C, SOFIKITIS N, et al. Multi-detector row CT urography on a 16-row CT scanner in the evaluation of urothelial tumors[J]. Eur Radiol, 2007, 17(4):1046-1054.
[7] KIM Y J, LEE S H, LIM K Y, et al. Development and validation of segmentation method for lung cancer volumetry on chest CT[J]. J Digit Imag, 2018, 31(4):505-512.
[8] LI X, GAO H, CHEN Z, et al. Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT[J]. Eur Radiol, 2018, 28(9):3742-3750.
[9] GUO L, ZHANG L, ZHAO J. CT scan and magnetic resonance diffusion-weighted imaging in the diagnosis and treatment of esophageal cancer[J]. Oncol lett, 2018, 16(6):7117-7122.
[10] CHO S J, SUH C H, BAEK J H, et al. Diagnostic performance of MRI to detect metastatic cervical lymph nodes in patients with thyroid cancer:a systematic review and meta-analysis[J]. Clin Radiol, 2020, 75(7):1-10.
[11] LI Y, SHI S, DIAO F, et al. Computed tomography and magnetic resonance imaging evaluation of pelvic lymph node metastasis in bladder cancer[J]. Cancer Commun, 2018, 37(1):1-8.
[12] WEN Y, PENG Y, ZHANG N, et al. Role of diffusion-weighted imaging in distinguishing thoracoabdominal neuroblastic tumours of various histological types and differentiation grades[J]. J Med Imag Radia Oncol, 2017, 61(6):718-724.
[13] HARI T, RICHA R, AKRITI G, et al. Multiparametric magnetic resonance imaging features identify aggressive prostate cancer at the phenotypic and transcriptomic level[J]. J Urol, 2018, 200(6):1241-1249.
[14] STOCK K F, AUTENRIETH M, SLOTTA-HUSPENINA K, et al. Innovative ultraschalldiagnostik bei nierentumoren innovative ultrasound-based diagnosis of renal tumors[J]. Der Urol, 2019, 58(5):1418-1428.
[15] MANNAERTS C K, WILDEBOER R R, REMMERS S, et al. Multiparametric ultrasound for prostate cancer detection and localization: Correlation of B-mode, shearwave elastography and contrast-enhanced ultrasound with radical prostatectomy specimens[J]. J Urol, 2019,202(6):1166-1173.
[16] ZHANG R, WANG Y, MA F, et al. Characteristics of contrast-enhanced ultrasonography and strain elastography of locally advanced breast cancer[J]. J Thor Dis, 2019, 11(12):5274-5289.
[17] WANG Y, LANUTI M, BERNHEIM A, et al. Fluorodeoxyglucose positron emission tomography for detection of tumor recurrence following radiofrequency ablation in retrospective cohort of stage I lung cancer[J]. Int J Hyperther, 2018, 35(1):1-8.
[18] CHIHHUA YEH, GIGIN LIN, JIUNJIE WANG, et al. Predictive value of 1H MR spectroscopy and 18F-FDG PET/CT for local control of advanced oropharyngeal and hypopharyngeal squamous cell carcinoma receiving chemoradiotherapy: a prospective study[J]. Oncotarget, 2017, 8(70):115513-115525.
[19] WANG F L, TAN Y M, GU X M, et al. Comparison of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging[J]. Chin Med J, 2016, 129(24):2926-2935.
[20] SANDI A K, JOHN L. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis[J]. World J Radiol, 2016, 8(11):851-856.
[21] SONG J T, YANG X Q, ZHANG X S, et al. Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging[J]. ACS Appl Mater Interfaces, 2015, 7(31):17287-17297.
[22] ZHU J, LU Y J, LI Y G, et al. Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging[J]. Nanoscale, 2014, 6(1):199-202.
[23] LIU T, SHI S X, LIANG C, et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J]. ACS Nano, 2015, 9(1):950-960.
[24] WANG G R, WANG Z W, WANG Y N, et al. Application of the dual-layer spectral detector CT in the CT angiography of superior vena cava[J]. Acta Acad Med Sin(中国医学科学院学报), 2017, 39(6):806-811.
[25] PAULUS M J, GLEASON S S, KENNEL S J, et al. High resolution X-ray computed tomography: an emerging tool for small animal cancer research[J]. Neoplasia, 2000, 2(1-2):62-70.
[26] ZHANG X T, DAI Z F. Research progress of multifunctional nanometer CT contrast agent[J]. Chin Sci Bull(科学通报), 2015, 60(35):3424-3437
[27] LIU Z, DU Y D, REN J S, et al. Non-toxic lead sulfide nanodots as efficient contrast agents for visualizing gastrointestinal tract[J]. Biomaterials, 2016, 100:17-26.
[28] LANIADO M, KORNMESSER W, HAMM B, et al. MR imaging of the gastrointestinal tract: value of Gd-DTPA[J]. Am J Roentgenol, 1988, 150(4):817-821.
[29] ANDERSEN E S, CHRISTENSEN P B, WEIS N. Transient elastography for liver fibrosis diagnosis[J]. Eur J Int Med, 2009, 20(4):339-342.
[30] BASU S, TORIGIAN D, ALAVI A. The role of modern molecular imaging techniques in gastroenterology[J]. Gastroenterology, 2008, 135(4):1055-1061.
[31] RICHARD GARNETT. A comprehensive review of dual-energy and multi-spectral computed tomography[J]. Clin Imag, 2020, 67:160-169.
[32] KABURAGI T, HARADA H, KOIZUMI W, et al. Complete response in far-advanced esophageal cancer treated with induction chemotherapy followed by definitive chemoradiotherapy[J]. Gan To Kagaku Ryoho Cancer Chemother, 2015, 42(9):1103-1106.
[33] MUHANNA NIDAL, MEPHAM ADAM, MOHAMADI REZA M, et al. Nanoparticle-based sorting of circulating tumor cells by epithelial antigen expression during disease progression in an animal model[J]. Nanomed Nanotechnol Biol Med, 2015, 11(7):1613-1620.
[34] AFSHAR M, PASCOE J, WHITMARSH S, et al.Temsirolimus for patients with metastatic renal cell carcinoma: outcomes in patients receiving temsirolimus within a compassionate use program in a tertiary referral center[J]. Drug Des Dev Ther, 2015, 9:13-19.
[35] PEDOTE P, GAUDIO F, MOSCHETTA M, et al. CT-guided needle biopsy performed with modified coaxial technique in the diagnosis of malignant lymphomas[J]. La Radiol Med, 2010, 115(8):1292-1303.
[36] GUO Y J, HUANG W S, ZHOU B. Transarterial chemoembolization plus computed tomography-guided percutaneous radiofrequency ablation for small hepatocellular carcinoma in special locations[J]. Natl Med J China(中华医学杂志), 2013, 93(33):2627-2630.
[37] SIMANEK V, KLECKA J, TRESKA V, et al. Radiofrequency ablation of non-resectable lung tumors[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech, 2014, 158(3):451-454.
[38] MAHNKEN A H, BRUNERS P, TACKE J A, et al. CT-guided radiofrequency ablation of liver metastases from colorectal cancer[J]. Deutsche Med Wochenschr, 2009, 134(19):976-980.
[39] GUO R Q, LI X G. Computed tomography (CT)-guided percutaneous coaxial biopsy combined with microwave ablation for the treatment of renal masses[J]. Minim Invasive Ther Ali Technol, 2020,(4):1-6.
[40] INIEWSKI K. X-Ray And Computed Tomography Imaging Principles [M]. New Jersey: John Wiley & Sons, Ltd, 2009.
[41] ENDO I, MATSUYAMA R, MORI R, et al. Imaging and surgical planning for perihilar cholangiocarcinoma[J]. J Hepato-Biliary-Pancreatic Sci, 2014, 21(8):525-532.
[42] NISHIDA Y, MATSUE Y, SUEHARA Y, et al. Clinical and prognostic significance of bone marrow abnormalities in the appendicular skeleton detected by low-dose whole-body multidetector computed tomography in patients with multiple myeloma[J]. Blood Cancer J, 2015(7):e329-e329.
[43] SAINI S. Multi-detector row CT: principles and practice for abdominal applications1[J]. Radiology, 2004, 233(2):323-327.
[44] CARMI R, NAVEH G, ALTMAN A. Material separation with dual-layer CT[C]. Nuclear Science Symposium Conference Record, October 23-29, 2005.
[45] MILLER J M, ROCHITTE C E, DEWEY M, et al. Diag-nostic performance of coronary angiography by 64-row CT[J]. New Engl J Med,2008,359:2324-2336.
[46] STRETZ CHRISTOPH, SONG X Y, KILLORY BRENDAN D, et al. Rheumatoid Meningitis: diagnostic and therapeutic observations[J]. Connect Med, 2016, 80(3):163-166.
[47] SEIFARTH H, SCHLETT C L, LEHMAN S J, et al. Correlation of concentrations of high-sensitivity troponin T and high-sensitivity C-reactive protein with plaque progression as measured by CT coronary angiography[J]. J Cardiov Comp Tomogr, 2014, 8(6):452-458
[48] KAWASAKI Y, EGAWA H, HAMADA D, et al. Location of intrapelvic vessels around the acetabulum assessed by three-dimensional computed tomographic angiography: prevention of vascular-related complications in total hip arthroplasty[J]. J Orthop Sci, 2012, 17(4):397-406.
[49] WELLS S A, WHEELER K M, MITHQAL A, et al. Percutaneous microwave ablation of T1a and T1b renal cell carcinoma: short-term efficacy and complications with emphasis on tumor complexity and single session treatment[J]. Abdom Radiol, 2016, 41(6):1203-1211.
[50] TAKADA J, HIDAKA H, NAKAZAWA T, et al. Modified response evaluation criteria in solid tumors is superior to response evaluation criteria in solid tumors for assessment of responses to sorafenib in patients with advanced hepatocellular carcinoma[J]. BMC Res Notes, 2015, 8:609.
[51] KEYS W F, KEIGHTLEY A J, WELBURY R R. Sectioning of a double tooth aided by cone-beam computed tomography[J]. Eur Arch Paediatr Dent, 2013, 14(3):167-171.
[52] CAPAR I D, ERTAS H, ARSLAN H, et al. A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a turkish population[J]. J Endodon, 2015, 41(4):473-478.
[53] A, KFIR, Y, et al. The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models[J]. Int Endodon J, 2013, 46(3):275-288.
[54] ZINZANI P L, BROCCOLI A, GIOIA D M, et al. Interim positron emission tomography response-adapted therapy in advanced-stage hodgkin lymphoma: final results of the phase Ⅱ part of the HD0801 study [J]. Apmis, 2016, 87B(12):277-283.
[55] LEE J W, LEE S M, YUN M, et al. Prognostic value of volumetric parameters on staging and posttreatment FDG PET/CT in patients with stage Ⅳ non-small cell lung cancer[J]. Clin Nucl Med, 2016, 41(5):347-353.
[56] PARK S I, LEE J H, HAM H J, et al. Evaluation of 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in rat models with hepatocellular carcinoma with liver cirrhosis[J]. Biomed Mater Eng, 2015, 26 Suppl 1(s1):S1669.
[57] VANDREEL A, PATEL D, EMMADI R, et al. FDG PET/CT manifestation of rare widespread metastatic chemoradiation-refractory thymic squamous cell carcinoma[J]. Clin Nucl Med, 2015, 40(11):899-901.
[58] ALMEIDA L S, SANTOS A O, MARTINS G H, et al. 18F-FDG PET/CT images defined the true extent of a urothelial bladder carcinoma[J]. Urol Case Rep, 2020, 33:101289.
[59] GRAFFY P M, PICKHARDT P J. Quantification of hepatic and visceral fat by CT and MR imaging: relevance to the obesity epidemic, metabolic syndrome and NAFLD[J]. Br J Radiol, 2016, 89(1062):20151024
[60] ALEXIS F, PRIDGEN E, MOLNAR L K, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles[J]. Mole Pharm, 2008, 5(4):505-515.
[61] MIKSE O, KIEN L, BHAT A, et al. A single dose of a novel anti-human short half-life engineered CD45-targeted antibody-drug conjugate (ADC) is cytoreductive on patient-derived tumors and extends survival beyond standards of care in multiple pre-clinical models of hematologic malignancy[J]. Biol Blood Marrow Transplant, 2020, 26(3):S96-S96.
[62] PAL K, MADAMSETTY V S, DUTTA S K, et al. Synchronous inhibition of mTOR and VEGF/NRP1 axis impedes tumor growth and metastasis in renal cancer[J]. Prec Oncol, 2019, 3(3):484-500.
[63] LU S, BAO X, HAI W, et al. Multi-functional self-assembled nanoparticles for pVEGF-shRNA loading and anti-tumor targeted therapy[J]. Int J Pharm, 2019, 575:118898.
[64] WICKSTROEM, K, KARLSSON J, ELLINGSEN C, et al. Synergistic effect of a HER2 targeted thorium-227 conjugate in combination with olaparib in a BRCA2 deficient xenograft model[J]. J Med Imag Radia Sci, 2019, 50(4):S95-S96.
[65] CHIU S J, UENO N T, LEE R J. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab,Herceptin) conjugated polyethylenimine[J]. J Controlled Release, 2004, 97(2):357-369.
[66] KAEOPOOKUM P, PETRIK M, SUMMER D, et al. Comparison of 68 Ga-labeled RGD mono- and multimers based on a clickable siderophore-based scaffold[J]. Nucl Med Biol, 2019, 78-79:1-10.
[67] GE L, YOU X R, KANG Y, et al. Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy[J]. Biomater, 2017, 6(1):125-135.
[68] ŁUCJA P, MARTYNA M, GRZEGORZ N, et al. IRGD peptide as effective transporter of CuInZnxS2+x quantum dots into human cancer cells[J]. Coll Surf B, Biointerfaces, 2016, 146:9-18.
[69] XIN Y, LIU T,YANG C L. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery[J]. Int J Nanomed, 2016, 11:5807-5821.
[70] YIN X L, FENG S S, CHI Y Y, et al. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma[J]. Drug Deliv, 2018, 25(1):900-908.
[71] LIN J Y, HU W W, DAO F L, et al. Folic acid-modified diatrizoic acid-linked dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human cervical cancer[J]. J Cancer, 2018, 9(3):564-577.
[72] WANG X Q, TU M M, YI Y J, et al. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells[J]. Anal Biochem, 2016, 512:8-17.
[73] ELROD D B, PARTHA R, DANILA D, et al. An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid[J]. Nanomed Nanotechnol Biol Med, 2009, 5(1):42-45.
[74] DELAMA A, DORATI R, GENTA I, et al. Microfluidic encapsulation method to produce stable liposomes containing iohexol[J]. J Drug Deliv Sci Technol, 2019, 54:101340.
[75] KARPUZ M, OZTURK N, ERDOGAN S, et al. Radiolabeled,folate-conjugated liposomes as tumor imaging agents: Formulation and in vitro evaluation[J]. J Drug Deliv Sci Technol, 2019, 50:321-328.
[76] TORCHILIN V P. PEG-based micelles as carriers of contrast agents for different imaging modalities[J]. Adv Drug Deliv Rev, 2002, 54(2):235-252.
[77] CORMODE D P, NAHA P C, FAYAD Z A, et al. Nanoparticle contrast agents for computed tomography: a focus on micelles[J]. Cont Med Mol Imag, 2014, 9(1):37-52.
[78] DING J L, JIANG Y, MA M, et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques[J]. Biomaterials, 2013, 34(1):209-216.
[79] ILLERT P, WÄNGLER B,UHRIG T, et al. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging[J]. J Appl Poly Sci, 2019, 136(19):47571.
[80] YORDANOV A T, MOLLOV N, LODDER A L, et al. A water-soluble triiodo amino acid and its dendrimer conjugate for computerized tomography (CT) imaging[J]. J Serb Chem Soc, 2005, 70(2):532-535.
[81] FU Y J, NITECKI D E, DAVID M, et al. Dendritic iodinated contrast agents with PEG-cores for CT imaging: synthesis and preliminary characterization[J]. Bioconjug Chem, 2006, 17(4):1043-1056.
[82] LEE J Y, CHUNG S J, CHO H J, et al. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging[J]. Biomaterials, 2016, 85:218-231.
[83] ESPINOSA G, LI Y F, BADEA C T, et al. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent[J]. Plos One, 2012, 7(4):e34496.
[84] ANSHUMAN, JAKHMOLA, NICOLAS, et al. Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography[J]. Biomaterials, 2014 35(9):2981-2986.
[85] ZHOU Z G, KONG B, YU C, et al. Tungsten oxide nanorods:an efficient nanoplatform for tumor CT imaging and photothermal therapy[J]. Sci Rep, 2014, 4(1):903-910.
[86] TIAN G, ZHENG X P, ZHAN X, et al. Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging[J]. Small, 2014, 10(20):4160-4170.
[87] HUO D, HE J, LI H, et al. X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles[J]. Biomaterials, 2014, 35(33):9155-9166.
[88] ZHANG X D, CHEN J, MIN Y H, et al. Metabolizable Bi2Se3 Nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging[J]. Adv Funct Mater, 2014, 24(12):1718-1729.
[89] RABIN O, WEISSLEDER R, GRIMM J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphidc nanoparticles[J]. Nat Mater, 2006, 5(2):118-122.
[90] Hu X, Sun J H, Li F Y, et al. Renal-clearable hollow bismuth subcarbonate nanotubes for tumor targeted computed tomography imaging and chemoradiotherapy[J]. Nano Lett, 2018, 18(2):1196-1204.
[91] LI L H, LU Y, JIANG C Y, et al. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles[J]. Adv Funct Mater, 2018, 28(5):1704623.
[92] LI Z, LIU J, HU Y, et al. Biocompatible PEGylated bismuth nanocrystals: “All-in-one” theranostic agent with triple-modal imaging and efficient in vivo photothermal ablation of tumors[J]. Biomaterials, 2017, 141:284-295.
[93] HIGBY G J. Gold in medicine:a review of its use in the West before 1900[J]. Gold Bull, 1982, 15(4):130.
[94] SEN T, MANDAL S, HALDAR S, et al. Interaction of gold na-noparticle with human serum albumin (HSA) protein using surface energy transfer[J]. Phys Chem C, 2011, 115(49):24037-24044.
[95] LIU H, XU Y, WEN S, et al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles[J]. Chemistry, 2013, 9(20):6409-6416.
[96] WEN S H, WANG H, XIAN T T, et al. Facile synthesis of acetylated dendrimer-entrapped gold nanoparticles with enhanced gold loading for CT imaging applications[J]. J Mater Chem B, 2013, 1(21):2773-2780.
[97] KHARRAZI S, SARKAR S, ATTARAN N, et al. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells[J]. Mater Sci Eng C, 2018, 89:182-193.
[98] LIU H, WANG H, XU Y H, et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma[J]. ACS Appl Mater Interfaces, 2014, 6(9):6944-6953.
[99] ORZA A, YANG Y, FENG T, et al. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging[J]. Med Phys, 2016, 43(1):589.
[100] ECK W, NICHOLSON A I, ZENTGRAF H, et al. Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice[J]. Nano Lett, 2010, 10(7):2318-2322.
[101] KIM D, JEONG Y Y, JON S Y, et al. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer[J]. Acs Nano, 2010, 4(7):3689-3696.
[102] MCGUIRK C M, KATZ M J, STERN C L, et al. Turning on catalysis: incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic framework[J]. J Am Chem Socy, 2015, 137(2):919-925.
[103] YE J W, ZHOU H L, LIU S Y, et al. Encapsulating pyrene in a metal-organic zeolite for optical sensing of molecular oxygen[J]. Chem Mater, 2015, 27(24):8255-8260.
[104] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscle carriers as a potential platform for drug delivery and imaging[J]. Nat Mater, 2010, 9(2):172-178.
[105] ZHOU J G, TIAN G, ZHENG L J, et al. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy[J]. Adv Healthcare Mater, 2018, 7(10):e1800022.
[106] ABÁNADES L I, FORGAN R. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordinat Chem Rev, 2019, 380:892-899.
[107] QIN L, LIN L X, FANG Z P, et al. A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for Ebolavirus RNA sequences[J]. Chem Commun, 2016, 52(1):132-135.
[108] ZHANG T, WANG L, MA C, et al. BODIPY-containing nanoscale metal-organic frameworks as contrast agents for computed tomography[J]. Mater Chem B, 2017, 5(12):2330-2336.
[109] DEKRAFFT K E, BOYLE W S, BURK L M, et al. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography[J]. J Mater Chem, 2012, 22(35):18139-18144.
[110] LIU J H, SHI Y, LI B, et al. Preparation and CT/MR dual mode imaging of BaGdF5 nanoparticles modified with polyethylenimine[J]. J Chem Coll Univ, 2018, 39(09):1881-1885.
[111] JENNINGS LE, LONG N J. ‘Two is better than one′--probes for dual-modality molecular imaging[J]. Chem Commun, 2009, 24(24):3511-3524.
[112] TEMPANY C M C, JAYENDER J, KAPUR T, et al. Multimodal imaging for improved diagnosis and treatment of cancers.[J]. Cancer, 2015, 121(6):817-827.
[113] SHI D, MI G J,SHEN Y, et al. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier[J]. Nanoscale, 2019, 11(32):15057-15071.
[114] THEUNE L E, BUCHMANN J, WEDEPOHL S, et al. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy[J]. J Controlled Release, 2019, 311-312:147-161.
[115] HUANG L H, CHUNG H Y, SU H M, et al. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line[J]. BMC Cancer, 2017, 17(1):890.
[116] MAHLERT L, ANDERSKI J, SCHOPPA T, et al. In vitro evaluation of innovative light-responsive nanoparticles for controlled drug release in intestinal PDT[J]. Int J Pharm, 2019, 565:199-208.
[117] LI X N, CANAN S, ALBARQI H A, et al. A tumor-activatable theranostic nanomedicine platform for NIR fluorescence-guided surgery and combinatorial phototherapy[J]. Theranostics, 2018, 8(3):767-784.
[118] MIWA S, MATSUMOTO Y, HIROSHIMA Y, et al. Fluorescence-guided surgery of prostate cancer bone metastasis[J]. J Surg Res, 2014, 192(1):124-133.
[119] BECK Y, HASEGAWA K, ISHIZAWA T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115(11):2491-2504.
[120] YANG Z Y, WANG J F, LIU S, et al. Tumor-targeting W18O49 nanoparticles for dual-modality imaging and guided heat-shock-response-inhibited photothermal therapy in gastric cancer[J]. Part Part Sys Character, 2019, 36(7):1900124.
[121] LU X Q, LI Y B, BAI X L, et al. Multifunctional Cu1.94S-Bi2S3@polymer nanocomposites for computed tomography imaging guided photothermal ablation[J]. Sci China Mater, 2017, 60(08):777-788.
[122] ZHENG J, JAFFRAY D, ALLEN C, et al. Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model[J]. Mol Pharm, 2009, 6(2):571.
[123] WEI C S,WU P C, YANG Y S, et al. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging[J]. J Am Chem Soc, 2010, 132(38):13270-13278.
[124] LI J C, ZHENG L F, CAI H D, et al. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications[J]. ACS Appl Mater Interfaces, 2013, 5(20):10357-10366.
[125] YUE L D, WANG J L, DAI Z F, et al. A pH-responsive, self-sacrificial nanotheranostic agent for potential In vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy[J]. Bioconjug Chem, 2017, 28(2):400-409.
[126] LI K, WEN, LARSON A C, et al. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer[J]. Int J Nanomed, 2013, 8:2589-2600..
[127] HISATAKA K, PETER L. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications[J]. Account Chem Res, 2011, 44(2):83-90.
[128] LIN X S, JIANG M G, ZHANG X B, et al. Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes[J]. Talanta, 2014, 130:356-362.
[129] HUANG S L, WU Y L, ZENG F, et al. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue[J]. Anal Chim Acta, 2018, 1031:169-177.
[130] LUIZA Z, FARIAS X, LUIZA M Z. Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase[J]. Anal Biochem, 2017, 532:29-37.
[131] WANG Y Y, YANG X F, ZHONG Y G, et al. Development of a red fluorescent light-up probe for highly selective and sensitive detection of vicinal dithiol-containing proteins in living cells[J]. Chem Sci, 2016, 7(1):518-524.
[132] THOMAS B, MARION H, FABRICE B, et al. Synthesis and in vitro and in vivo evaluation of MMP-12 selective optical probes[J]. Bioconjug Chem, 2016, 27(10):2407-2417.
[133] YOU L J, LIU X C, FANG Z X, et al. Synthesis of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer[J]. Mater Sci Eng C, 2019, 94:291-302.
[134] SOGN Z, MAO D,SUNG S H P, et al. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation[J]. Adv Mater, 2016, 28(33):7249-7256.
[135] SONG Z T, YANG X Q, ZHANG X S, et al. Composite silica coated gold nanosphere and quantum dots nanoparticles for X-ray CT and fluorescence bimodal imaging[J]. Dalton Transact, 2015, 44(25):11314-11320.
[136] FENG J, CHANG D, WANG Z, et al. A FITC-doped silica coated gold nanocomposite for both in vivo X-ray CT and fluorescence dual modal imaging[J]. RSC Adv, 2014, 4(94):51950-51959.
[137] ZHENG X K, LI C G, HE Y Q, et al. A novel bi-modal probe based on BaHoF5and Cu-doped QDs with enhanced CT contrast efficiency and fluorescent brightness for tumor-targeting imaging[J]. Microchim Acta, 2020, 187(45):2656-2672.
[138] SU H F, WU F S, SUN X Z, et al. Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells[J]. Coll Surf B:Biointerfaces, 2018, 170:194-200.
[139] ZHANG C L, ZHOU Z J, QIAN Q R, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging[J]. J Mater Chem B, 2013, 1(38):5045-5053.
[140] XU H, OHULCHANSKYY T Y, YAKOVLIEV A, et al. Nanoliposomes co-encapsulating CT imaging contrast agent and photosensitizer for enhanced, imaging guided photodynamic therapy of cancer[J]. Theranostics, 2019, 9(5):1323-1335.
[141] JIN YS, MA X B, FENG S S, et al. Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics[J]. Bioconjug Chem, 2015, 26(12):2530-2541.
[142] WU B, WAN B, LU S T, et al. Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy[J]. Int J Nanomed, 2017, 12:4467-4478.
[143] WANG Y Y, LIU X J, DENG G Y, et al. Multifunctional PS@CS@Au-Fe3O4-FA nanocomposites for CT,MR and fluorescence imaging guided targeted-photothermal therapy of cancer cells[J]. J Mater Chem B, 2017, 5(22):4221-4232.
[144] HU D H, ZHANG P F, LIU S H, et al. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo[J]. Nanoscale, 2013, 5(4):1624-1628.
[145] MISHRA S K, KANNAN S. A bimetallic silver-neodymium theranostic nanoparticle with multimodal NIR/MRI/CT imaging and combined chemo-photothermal therapy[J]. Inorg Chem, 2017, 56(19):12054-12066.

基金

国家自然科学基金项目资助(81773666);河北省自然科学基金项目资助(H2017206158);河北省卫生厅医学科学研究重点课题资助(20170472);河北医科大学大学生创新性实验计划项目资助(USIP2019056,USIP2019149)
PDF(2185 KB)

Accesses

Citation

Detail

段落导航
相关文章

/